KVS BHOPAL REGION CBT TEST OCT 2023 SUBJECT-MATHEMATICS CLASS-12

TOPICS:

DIFFERENTIAL EQUATIONS, VECTORS

Case Study 1

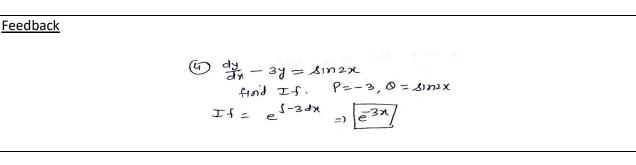
If the equation is of the form $\frac{dy}{dx} + Py = Q$, where *P*, *Q* are functions of *x*, then the solution of the differential equation is given by $ye^{\int Pdx} = \int Q e^{\int Pdx} dx + c$, where $e^{\int Pdx}$ is called the integrating factor (I.F.).

Based on the above information, answer the following questions.(Q1 to Q4)

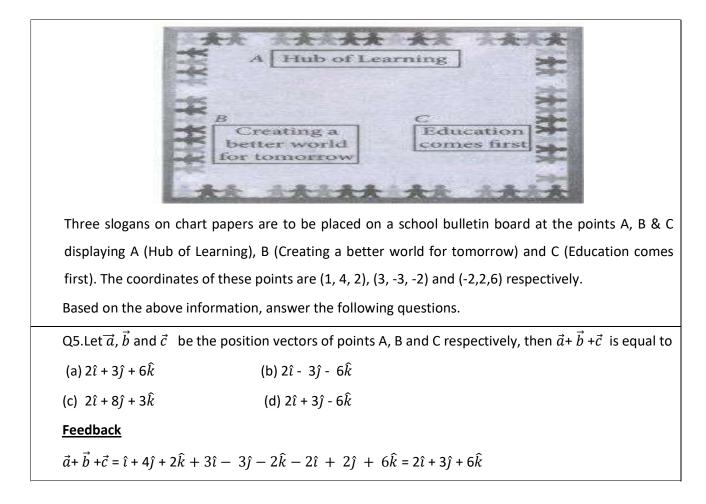
Q1. The integrating factor of the differential equation $\sin x \frac{dy}{dx} + 2y\cos x = 1$ is $(\sin x)^{\lambda}$, where $\lambda =$

Q2. Integrating factor of the differential equation $(1 - x^2)\frac{dy}{dx} - xy = 1$ is (a) -x (b) $\frac{x}{1+x^2}$ (c) $\sqrt{1-x^2}$ (d) $\frac{1}{2}\log(1-x^2)$

Feedback


$$\begin{array}{c}
(1 - x^2) \frac{dy}{dx} - \lambda y = 1 \\
\frac{dy}{dx} = -\frac{\lambda y}{(1 - x^2)} = 1 \\
P = -\frac{\lambda}{(1 - x^2)}, \quad Q = 1 \\
If = -\int \frac{\lambda}{(1 - x^2)} d\lambda \quad 1 - x^2 = t \\
-2x dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{2} \int \frac{dt}{at} \quad -\lambda dx = dt \\
= -\frac{1}{$$

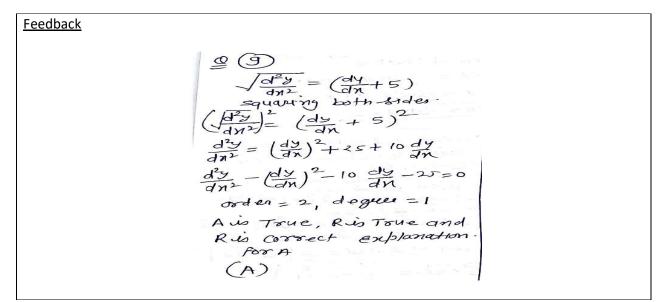
Q3. General solution of
$$\frac{dy}{dx} + y \tan x = \sec x$$
 is
(a) $y \sec x = \tan x + c$ (b) $y \tan x = \sec x + c$ (c) $\tan x = y \tan x + c$ (d) $x \sec x = \tan y + c$


Feedback

(3) General Sol. dy + y tanx=serx P=tanx, Q = secx If = e^{stanxdx} = e^{doglsecx} the general solutions = secx y secx = f secx. seex.dx+c y secx = f sec²x dx + c y secx = tanx+c

Q4. The integrating factor of differential equation $\frac{dy}{dx} - 3y = \sin 2x$ is (a) e^{3x} (b) e^{-2x} (c) e^{-3x} (d) xe^{-3x}

Case Study – 2



Q8.The unit vector in t	ne $\vec{a} + \vec{b} + \vec{c}$ is :
(a) $\frac{2}{7}\hat{\iota} - \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}$	(b) $\frac{2}{7}\hat{\iota} + \frac{3}{7}\hat{j} - \frac{6}{7}\hat{k}$
(c) $\frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}$	(d) $\frac{2}{9}\hat{i} + \frac{3}{9}\hat{j} + \frac{6}{9}\hat{k}$
<u>Feedback</u>	
	$\begin{array}{l} (3) \\$

Directions: Each of these questions (Q9 & Q10) contains two statements: Assertion (A) and Reason (R). Each of these questions also has four alternative choices, any one of which is the correct answer. You have to select one of the options (a), (b), (c) and (d) given below :

- (a) A is true , R is true and R is a correct explanation for A
- (b) A is true , R is true and R is not a correct explanation for A
- (c) A is true and R is false
- (d) A is false and R is true
- Q9 Assertion (A): The order and degree of the differential equation $\sqrt{\frac{d^2y}{dx^2}} = \frac{dy}{dx} + 5$ are 2 and 1 respectively.

Reason (R): Order of a differential equation is defined as the order of the highest order derivative of the dependent variable with respect to the independent variable involved in the given differential equation & degree is defined as the power of the highest order derivative.

Q 10. Assertion: Direction cosines of the vector $2\hat{i} + 3\hat{j} - 6\hat{k}$ are 2/7, -3/7, 6/7

Reason: Direction cosines of a vector $\vec{r} = a\hat{i} + b\hat{j} + c\hat{k}$ are a, b, c.

Feedback	
	Dector 21+33+5; (Alsertion)
	d Katlo and and and a
	d' R colorme are = $\frac{2}{7}$, $\frac{3}{7}$, $\frac{-6}{7}$
	Reason: Vector = alutaco
	$d^{T}R \text{ cosine are} = \frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},$
	<u> </u>
	Aus True and Ris false. (C)
	(C)

Answer Key

Case Study 1	Q1. C	Q2. C	Q3. A	Q4. C
Case Study 2	Q5. A	Q6. C	Q7. B	Q8. C
Q9. A	Q10. C			